Hashing

Part Two



Outline for Today

* Recap from Last Time
* A quick refresher on hash functions.
« Hashing Variants

 We built a hash table last lecture. There are other
strategies we could have used.

 Linear Probing
* A deceptively simple and fast hashing scheme.
* Robin Hood Hashing

 Moving items around in a hash table.



Recap from Last Time



Hash Functions

A hash function is a function that takes an object as
input and produces an integer called its hash code.
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 If you feed the same input to a hash function multiple
times, it will always produce the same output.

« Aside from this, though, the outputs of hash functions
should look more or less random.



Hash Tables

A hash table is a data structure where items
are positioned in an array based on their hash
code.

* Last time, we saw chained hashing, where all
items with the same hash code are stored in
the same slot.
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Try It Yourself!

* Insert the following
values into this hash

table. [0] [1] [2]
A (hash code 0)
B (hash code 1)
C (hash code 2)
D (hash code 0)
E (hash code 0)
F (hash code 1)

Which items end in which
buckets? And in which order?

Answer at
https://pollev.com/cs106bwin23



https://pollev.com/cs106bwin23
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Try It Yourself!

* Insert the following
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* Insert the following
values into this hash
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Try It Yourself!

* Insert the following
values into this hash

table. [2]

 C (hash code 2)
D (hash code 0)
« E (hash code 0)
e F (hash code 1)

[0] [1]
A (hash code 0) ﬁ
B (hash code 1)
D F

v
E




New Stuff!



Making Fast Hash Tables

 Hash tables, like the one we saw last time, are among
the most-commonly-used data structures in practice.

* As a result, it’s important for them to work as quickly
and efficiently as possible.

 Anecdote: Google recently invested years of effort
building a faster hash table. Why?

(Better hash tables) X (Lots of computers)
(Huge equipment, power, and CO:z savings)

 The faster table they developed is based on insights
from a different approach to building Map and Set.



Open Addressing

* The style of hashing we saw last time is called
chained hashing, since we “chain” together all
the items that have the same hash code.

* There is a family of other hash tables that use an
idea called open addressing.

* In open addressing,
= each table slot holds at most one element. =

 If multiple elements hash to the same slot, they
“leak out” and spill over into other free slots.

* These strategies form the basis for some of the
fastest hash tables.



Linear Probing

 Linear probing is
a simple open-
addressing
hashing strategy.

* We maintain an
array of slots,
which we think of
as forming a ring.
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Linear Probing

 Deletions are a bit
trickier than in
chained hashing.

 We cannot just do a
search and remove
the element where we

find it.
« Why?

Answer at
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% Linear Probing at a Glance %

« To check if an element exists in the table:
Compute the hash code of the element.
Jump to that location in the table.

Scan forward - wrapping around if necessary - until the item or an
empty slot is found.

* To insert an element into the table:
If the item already exists, do nothing.

Otherwise, jump to the slot given by the hash code of the element.

Walk forward - wrapping around if necessary - until a blank spot or
tombstone slot is found. Then, put the item there.

« To remove an element from the table:

Jump to the slot given by the hash code of the element.

Walk forward - wrapping around if necessary - until the item or an

empty slot is found. If the item is found, replace it with a
tombstone.



How Fast is Linear Probing?

 Recall: The load factor of a hash table,
denoted a, is the ratio of the number of
items in the table to the number of slots.

» Fact: For any fixed value a < 1, the
expected cost of a lookup in a linear
probing table is O(1), assuming you have a
good hash function (and you rehash when
the table gets too full).

* This is the same big-O cost as a chained
hash table, though with a totally different
strategy!



Try It Yourself!

 Insert the following
values into this table.

A (hash code 5)
B (hash code 5)
 C (hash code 5)
D (hash code 8)
 E (hash code 7)
 FF (hash code 06)
G (hash code 5)

Which slot does G end in?

Answer at
https://pollev.com/cs106bwin23
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Time-Out for Announcements!



Assignment 6

« Assignment 5 was due today at 1:00PM.

 Want to use your late days? You can extend the
deadline by 24 or 48 hours.

 Assignment 6 (T'he Great Stanford Hash-
Off) goes out today. It’s due next Friday.

 Implement the hashing strategies from today!

 See how fast these approaches are and how
they compare against chained hashing!

* As always, come talk to us if you have any
questions! That’s what we’re here for.



Back to CS106B...



A Question of Fairness

 Suppose we look up each of these
elements. How many slots would we
need to look at to find each of them?

What are the remaining numbers?

Answer at

https://pollev.com/cs106bwin23

1 2
A (5) B(5) C(5) D(8) E(7) F(6) G(5)
4 5 6 7 8 9 10 11 12 13



https://pollev.com/cs106bwin23

A Question of Fairness

 Suppose we look up each of these
elements. How many slots would we
need to look at to find each of them?
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A (5) B(5) C(5) D(8) E(7) F(6) G(5)

4 5 6 7 8 9 10 11 12




A Question of Fairness

 Suppose we look up each of these

elements. How many slots would we
need to look at to find each of them?

 There’s a large variance in how long it’s
going to take to find things.

 How can we fix this?

1 2 3 1 3 5 7
A (5) B(5) C(5) D(8) E(7) F(6) G(5)
4 5 6 7 8 9 10 11 12 13




 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.
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the element we’re inserting is
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the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

0 1 2 3 3 3 3 0
A(5) B(5)C(5) G(5)F () E( D(8)H@2)
4 5 6 7 8 9 10 11 12 13




 Robin Hood hashing is a slight
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« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
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« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.
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* Neat trick: We can make
unsuccessful lookups in a
Robin Hood hashing table
faster than in a linear probing
table.

 Idea: Compare the distances

of the item to insert and the J (6)
item being looked up.
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* Neat trick: We can make
unsuccessful lookups in a
Robin Hood hashing table
faster than in a linear probing
table.

 Idea: Compare the distances
of the item to insert and the
item being looked up.

4

If J were in this
table, it would
have displaced
the E. So J can’t
be in the table!

J (6)

0 1 2 3 3 3

3 0 0

A (5) B(5) C(5) G(5) F(6) E(7)

D (8) H12) I(13) -

4 5 6 7 8 9 10

11 12 13



e Neat trick: Robin Hood
hashing doesn’t need
tombstones.

 We can use a technique
called backward-shift
deletion instead.
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e Neat trick: Robin Hood
hashing doesn’t need
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 We can use a technique
called backward-shift
deletion instead.

We can’t leave this

slot blank. How
should we fill it?
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already home.

We’'re done! \
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e Neat trick: Robin Hood
hashing doesn’t need
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% Robin Hood Hashing at a Glance %

« To check if an element exists in the table:
Jump to the spot in the table given by the element’s hash code.

Scan forward - wrapping around if necessary - keeping track of how many steps
you’'ve taken. Stop when you find the item, you find a blank slot, or you find a
filled slot closer to home than the number of steps you've taken.

* To insert an element into the table:
If the element is already in the table, do nothing.

Jump to the table slot given by the element’s hash code. Scan forward - wrapping
around if necessary - keeping track of the number of steps taken. If you find an
empty slot, place the element there. Otherwise, if the current slot is full and
closer to home than the element you’re inserting, place the item to insert there,

displacing the element that was at that spot, and continue the insertion as if you
were inserting the displaced element.

 To remove an element from the table:
Jump to the slot given by the hash code of the element.

Walk forward - wrapping around if necessary - until the item or an empty slot is
found. If the item is found, remove it. Then, keep moving forward - wrapping

around as necessary - moving elements backward in the table one slot until an
empty slot or an item in its home position is found.



Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

A (hash code 3)
B (hash code 4)
e C (hash code 4)
D (hash code 3)

Which slot does D end in?
How far is it from home?

Answer at
https://pollev.com/cs106bwin23



https://pollev.com/cs106bwin23
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Robin Hood Hashing

 Like linear probing, with a good hash function, the
expected cost of a lookup in a Robin Hood hash table is

O(1).

* (Assuming you have a fixed load factor a and rehash the table
when you get too full.)

 Robin Hood hashing requires a bit of extra work
compared to linear probing for the distance
bookkeeping.

 However, the speedups from cutting off searches early
and for not having tombstones are significant at high
load factors.

* Optional: Code up Robin Hood hashing and compare it
against linear probing.



Your Action Items

 Start Assignment 6

* You know the drill! Slow and steady progress
is the name of the game here.



Next Time

e Linked Lists

« A different way to store a sequence.
* Recursive Data Types

« Data types defined in terms of themselves.
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