Hashing

Part Two

Outline for Today

* Recap from Last Time
* A quick refresher on hash functions.
« Hashing Variants

 We built a hash table last lecture. There are other
strategies we could have used.

 Linear Probing
* A deceptively simple and fast hashing scheme.
* Robin Hood Hashing

 Moving items around in a hash table.

Recap from Last Time

Hash Functions

A hash function is a function that takes an object as
input and produces an integer called its hash code.

'dikdik"
I _» 28156

Ilpudull ‘> & a

||k d " ‘_> v } 13985
uau Hash Function — 3327

dikdik'—

 If you feed the same input to a hash function multiple
times, it will always produce the same output.

« Aside from this, though, the outputs of hash functions
should look more or less random.

Hash Tables

A hash table is a data structure where items
are positioned in an array based on their hash
code.

* Last time, we saw chained hashing, where all
items with the same hash code are stored in
the same slot.

(©)

HaN

(0] [1] [2] [3] [4] [5]

o - —

o
OfL
fol

2« | HN - |
o,

1)

ofy

4o «— oY «—
[ol
@

1
I

Try It Yourself!

* Insert the following
values into this hash

table. [0] [1] [2]
A (hash code 0)
B (hash code 1)
C (hash code 2)
D (hash code 0)
E (hash code 0)
F (hash code 1)

Which items end in which
buckets? And in which order?

Answer at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23

Try It Yourself!

* Insert the following
values into this hash

table. [0] [1] [2]

A (hash code 0)

Try It Yourself!

* Insert the following
values into this hash

table. [0] [1] [2]

A (hash code 0)

Try It Yourself!

* Insert the following
values into this hash

table. [0] [1] [2]

B (hash code 1)

Try It Yourself!

* Insert the following
values into this hash

table. [0] [1] [2]

B (hash code 1)

Try It Yourself!

* Insert the following
values into this hash

table. [0] [1] [2]

 C (hash code 2)

Try It Yourself!

* Insert the following
values into this hash

table. [0] [1] [2]

 C (hash code 2)

Try It Yourself!

* Insert the following
values into this hash

table. [0] [1] [2]

D (hash code 0)

Try It Yourself!

* Insert the following
values into this hash

table. [1] [2]

ik

D (hash code 0)

Try It Yourself!

* Insert the following
values into this hash

table. [1] [2]

ik

« E (hash code 0)

Try It Yourself!

* Insert the following
values into this hash

table. [1] [2]

ik

« E (hash code 0) E

Try It Yourself!

* Insert the following
values into this hash

table. [1] [2]

q.ﬁﬁ

e F (hash code 1)

Try It Yourself!

* Insert the following
values into this hash

table. [2]

[0] [1]
D F

v
E

e F (hash code 1)

Try It Yourself!

* Insert the following
values into this hash

table. [2]

 C (hash code 2)
D (hash code 0)
« E (hash code 0)
e F (hash code 1)

[0] [1]
A (hash code 0) ﬁ
B (hash code 1)
D F

v
E

New Stuff!

Making Fast Hash Tables

 Hash tables, like the one we saw last time, are among
the most-commonly-used data structures in practice.

* As a result, it’s important for them to work as quickly
and efficiently as possible.

 Anecdote: Google recently invested years of effort
building a faster hash table. Why?

(Better hash tables) X (Lots of computers)
(Huge equipment, power, and CO:z savings)

 The faster table they developed is based on insights
from a different approach to building Map and Set.

Open Addressing

* The style of hashing we saw last time is called
chained hashing, since we “chain” together all
the items that have the same hash code.

* There is a family of other hash tables that use an
idea called open addressing.

* In open addressing,
= each table slot holds at most one element. =

 If multiple elements hash to the same slot, they
“leak out” and spill over into other free slots.

* These strategies form the basis for some of the
fastest hash tables.

Linear Probing

 Linear probing is
a simple open-
addressing
hashing strategy.

* We maintain an
array of slots,
which we think of
as forming a ring.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

* To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

* To look up an element,
compute its hash code
and start looking there.

 Move around the ring
until either the element
is found or a blank spot
1S detected.

 (If every single slot is
full, stop looking after
you've tried them all.)

Linear Probing

* To look up an element,
compute its hash code
and start looking there.

 Move around the ring
until either the element
is found or a blank spot
1S detected.

 (If every single slot is
full, stop looking after
you've tried them all.)

Linear Probing

* To look up an element,
compute its hash code
and start looking there.

 Move around the ring
until either the element
is found or a blank spot
1S detected.

 (If every single slot is
full, stop looking after
you've tried them all.)

Linear Probing

* To look up an element,
compute its hash code
and start looking there.

 Move around the ring
until either the element
is found or a blank spot
1S detected.

 (If every single slot is
full, stop looking after
you've tried them all.)

Linear Probing

* To look up an element,
compute its hash code
and start looking there.

 Move around the ring
until either the element
is found or a blank spot
1S detected.

 (If every single slot is
full, stop looking after
you've tried them all.)

Linear Probing

* To look up an element,
compute its hash code
and start looking there.

 Move around the ring
until either the element
is found or a blank spot
1S detected.

 (If every single slot is
full, stop looking after
you've tried them all.)

Linear Probing

* To look up an element,
compute its hash code
and start looking there.

 Move around the ring
until either the element
is found or a blank spot
1S detected.

 (If every single slot is
full, stop looking after
you've tried them all.)

Linear Probing

* To look up an element,
compute its hash code
and start looking there.

 Move around the ring
until either the element
is found or a blank spot
1S detected.

 (If every single slot is
full, stop looking after
you've tried them all.)

Linear Probing

* To look up an element,
compute its hash code
and start looking there.

 Move around the ring
until either the element
is found or a blank spot
1S detected.

 (If every single slot is
full, stop looking after
you've tried them all.)

Linear Probing

* To look up an element,
compute its hash code
and start looking there.

 Move around the ring
until either the element
is found or a blank spot
1S detected.

 (If every single slot is
full, stop looking after
you've tried them all.)

Linear Probing

* To look up an element,
compute its hash code
and start looking there.

 Move around the ring
until either the element
is found or a blank spot
1S detected.

 (If every single slot is
full, stop looking after
you've tried them all.)

Linear Probing

* To look up an element,
compute its hash code
and start looking there.

 Move around the ring
until either the element
is found or a blank spot
1S detected.

 (If every single slot is
full, stop looking after
you've tried them all.)

Linear Probing

* To look up an element,
compute its hash code
and start looking there.

 Move around the ring
until either the element
is found or a blank spot
1S detected.

 (If every single slot is
full, stop looking after
you've tried them all.)

Linear Probing

* To look up an element,
compute its hash code
and start looking there.

 Move around the ring
until either the element
is found or a blank spot
1S detected.

 (If every single slot is
full, stop looking after
you've tried them all.)

Linear Probing

* To look up an element,
compute its hash code
and start looking there.

 Move around the ring
until either the element
is found or a blank spot
1S detected.

 (If every single slot is
full, stop looking after
you've tried them all.)

Linear Probing

* To look up an element,
compute its hash code
and start looking there.

 Move around the ring
until either the element
is found or a blank spot
1S detected.

 (If every single slot is
full, stop looking after
you've tried them all.)

Linear Probing

 Deletions are a bit
trickier than in
chained hashing.

 We cannot just do a
search and remove
the element where we

find it.
« Why?

Answer at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23

Linear Probing

 Deletions are a bit
trickier than in
chained hashing.

 We cannot just do a
search and remove
the element where we

find it.
« Why?

Linear Probing

 Deletions are a bit
trickier than in
chained hashing.

 We cannot just do a
search and remove
the element where we

find it.
« Why?

Linear Probing

 Deletions are a bit
trickier than in
chained hashing.

 We cannot just do a
search and remove
the element where we

find it.
« Why?

Linear Probing

 Deletions are a bit
trickier than in
chained hashing.

 We cannot just do a
search and remove
the element where we

find it.
« Why?

Linear Probing

 Deletions are a bit
trickier than in
chained hashing.

 We cannot just do a
search and remove
the element where we

find it.
« Why?

Linear Probing

 Deletions are a bit
trickier than in
chained hashing.

 We cannot just do a
search and remove
the element where we

find it.
« Why?

Linear Probing

 Deletions are a bit
trickier than in
chained hashing.

 We cannot just do a
search and remove
the element where we

find it.
« Why?

Linear Probing

 Deletions are a bit
trickier than in
chained hashing.

 We cannot just do a
search and remove
the element where we

find it.
« Why?

Linear Probing

 Deletions are a bit
trickier than in
chained hashing.

 We cannot just do a
search and remove
the element where we

find it.
« Why?

Linear Probing

 Deletions are a bit
trickier than in
chained hashing.

 We cannot just do a
search and remove
the element where we

find it.
« Why?

Linear Probing

 Deletions are often
implemented using
tombstones.

« When removing an
element, mark that the
slot is empty and was
previously occupied.

« When doing a lookup,
don't stop at a
tombstone. Instead,
keep the search going.

Linear Probing

 Deletions are often
implemented using
tombstones.

« When removing an
element, mark that the
slot is empty and was
previously occupied.

« When doing a lookup,
don't stop at a
tombstone. Instead,
keep the search going.

Linear Probing

 Deletions are often
implemented using
tombstones.

« When removing an
element, mark that the
slot is empty and was
previously occupied.

« When doing a lookup,
don't stop at a
tombstone. Instead,
keep the search going.

Linear Probing

 Deletions are often
implemented using
tombstones.

« When removing an
element, mark that the
slot is empty and was
previously occupied.

« When doing a lookup,
don't stop at a
tombstone. Instead,
keep the search going.

Linear Probing

 Deletions are often
implemented using
tombstones.

« When removing an
element, mark that the
slot is empty and was
previously occupied.

« When doing a lookup,
don't stop at a
tombstone. Instead,
keep the search going.

Linear Probing

 Deletions are often
implemented using
tombstones.

« When removing an
element, mark that the
slot is empty and was
previously occupied.

« When doing a lookup,
don't stop at a
tombstone. Instead,
keep the search going.

Linear Probing

 Deletions are often
implemented using
tombstones.

« When removing an
element, mark that the
slot is empty and was
previously occupied.

« When doing a lookup,
don't stop at a
tombstone. Instead,
keep the search going.

Linear Probing

 Deletions are often
implemented using
tombstones.

« When removing an
element, mark that the
slot is empty and was
previously occupied.

« When doing a lookup,
don't stop at a
tombstone. Instead,
keep the search going.

Linear Probing

 Deletions are often
implemented using
tombstones.

« When removing an
element, mark that the
slot is empty and was
previously occupied.

« When doing a lookup,
don't stop at a
tombstone. Instead,
keep the search going.

Linear Probing

 Deletions are often
implemented using
tombstones.

« When removing an
element, mark that the
slot is empty and was
previously occupied.

« When doing a lookup,
don't stop at a
tombstone. Instead,
keep the search going.

Linear Probing

 Deletions are often
implemented using
tombstones.

« When removing an
element, mark that the
slot is empty and was
previously occupied.

« When doing a lookup,
don't stop at a
tombstone. Instead,
keep the search going.

Linear Probing

 Having too many
tombstones in a
table can slow
down lookups,
since we have to
scan past them.

« Tombstones should
be overwritten
when new elements
are inserted.

Linear Probing

 Having too many
tombstones in a
table can slow
down lookups,
since we have to
scan past them.

« Tombstones should
be overwritten
when new elements
are inserted.

Linear Probing

 Having too many
tombstones in a
table can slow
down lookups,
since we have to
scan past them.

« Tombstones should
be overwritten
when new elements
are inserted.

Linear Probing

 Having too many
tombstones in a
table can slow
down lookups,
since we have to
scan past them.

« Tombstones should
be overwritten
when new elements
are inserted.

Linear Probing

 Having too many
tombstones in a
table can slow
down lookups,
since we have to
scan past them.

« Tombstones should
be overwritten
when new elements
are inserted.

Linear Probing

* Be caretul, though,
to make sure you
don’t allow for
duplicates in your
table.

Linear Probing

* Be caretul, though,
to make sure you
don’t allow for
duplicates in your
table.

Linear Probing

* Be caretul, though,
to make sure you
don’t allow for
duplicates in your
table.

Linear Probing

* Be caretul, though,
to make sure you
don’t allow for
duplicates in your
table.

Linear Probing

* Be caretul, though,
to make sure you
don’t allow for
duplicates in your
table.

Linear Probing

* Be caretul, though,
to make sure you
don’t allow for
duplicates in your
table.

Linear Probing

* Be caretul, though,
to make sure you
don’t allow for
duplicates in your
table.

Don’t put g in
this slot - it
already exists!

Linear Probing

* Be caretul, though,
to make sure you
don’t allow for
duplicates in your
table.

Linear Probing

* Be caretul, though,
to make sure you
don’t allow for
duplicates in your
table.

Linear Probing

* Be caretul, though,
to make sure you
don’t allow for
duplicates in your
table.

% Linear Probing at a Glance %

« To check if an element exists in the table:
Compute the hash code of the element.
Jump to that location in the table.

Scan forward - wrapping around if necessary - until the item or an
empty slot is found.

* To insert an element into the table:
If the item already exists, do nothing.

Otherwise, jump to the slot given by the hash code of the element.

Walk forward - wrapping around if necessary - until a blank spot or
tombstone slot is found. Then, put the item there.

« To remove an element from the table:

Jump to the slot given by the hash code of the element.

Walk forward - wrapping around if necessary - until the item or an

empty slot is found. If the item is found, replace it with a
tombstone.

How Fast is Linear Probing?

 Recall: The load factor of a hash table,
denoted a, is the ratio of the number of
items in the table to the number of slots.

» Fact: For any fixed value a < 1, the
expected cost of a lookup in a linear
probing table is O(1), assuming you have a
good hash function (and you rehash when
the table gets too full).

* This is the same big-O cost as a chained
hash table, though with a totally different
strategy!

Try It Yourself!

 Insert the following
values into this table.

A (hash code 5)
B (hash code 5)
 C (hash code 5)
D (hash code 8)
 E (hash code 7)
 FF (hash code 06)
G (hash code 5)

Which slot does G end in?

Answer at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23

Try It Yourself!

 Insert the following
values into this table.

A (hash code 5)
B (hash code 5)
 C (hash code 5)
D (hash code 8)
 E (hash code 7)
 FF (hash code 06)
G (hash code 5)

Try It Yourself!

 Insert the following
values into this table.

A (hash code 5)

Try It Yourself!

 Insert the following
values into this table.

A (hash code 5)

Try It Yourself!

 Insert the following
values into this table.

A (hash code 5)

Try It Yourself!

 Insert the following
values into this table.

B (hash code 5)

Try It Yourself!

 Insert the following
values into this table.

B (hash code 5)

Try It Yourself!

 Insert the following
values into this table.

B (hash code 5)

Try It Yourself!

 Insert the following
values into this table.

B (hash code 5)

Try It Yourself!

 Insert the following
values into this table.

 C (hash code 5)

Try It Yourself!

 Insert the following
values into this table.

 C (hash code 5)

Try It Yourself!

 Insert the following
values into this table.

 C (hash code 5)

Try It Yourself!

 Insert the following
values into this table.

 C (hash code 5)

Try It Yourself!

 Insert the following
values into this table.

 C (hash code 5)

Try It Yourself!

 Insert the following
values into this table.

D (hash code 8)

Try It Yourself!

 Insert the following
values into this table.

D (hash code 8)

Try It Yourself!

 Insert the following
values into this table.

D (hash code 8)

Try It Yourself!

 Insert the following
values into this table.

 E (hash code 7)

Try It Yourself!

 Insert the following
values into this table.

 E (hash code 7)

Try It Yourself!

 Insert the following
values into this table.

 E (hash code 7)

Try It Yourself!

 Insert the following
values into this table.

 E (hash code 7)

Try It Yourself!

 Insert the following
values into this table.

 E (hash code 7)

Try It Yourself!

 Insert the following
values into this table.

 FF (hash code 06)

Try It Yourself!

 Insert the following
values into this table.

 FF (hash code 06)

Try It Yourself!

 Insert the following
values into this table.

 FF (hash code 06)

Try It Yourself!

 Insert the following
values into this table.

 FF (hash code 06)

Try It Yourself!

 Insert the following
values into this table.

 FF (hash code 06)

Try It Yourself!

 Insert the following
values into this table.

 FF (hash code 06)

Try It Yourself!

 Insert the following
values into this table.

 FF (hash code 06)

Try It Yourself!

 Insert the following
values into this table.

G (hash code 5)

Try It Yourself!

 Insert the following
values into this table.

G (hash code 5)

Try It Yourself!

 Insert the following
values into this table.

G (hash code 5)

Try It Yourself!

 Insert the following
values into this table.

G (hash code 5)

Try It Yourself!

 Insert the following
values into this table.

G (hash code 5)

Try It Yourself!

 Insert the following
values into this table.

G (hash code 5)

Try It Yourself!

 Insert the following
values into this table.

G (hash code 5)

Try It Yourself!

 Insert the following
values into this table.

G (hash code 5)

Try It Yourself!

 Insert the following
values into this table.

G (hash code 5)

Try It Yourself!

 Insert the following
values into this table.

A (hash code 5)
B (hash code 5)
 C (hash code 5)
D (hash code 8)
 E (hash code 7)
 FF (hash code 06)
G (hash code 5)

Time-Out for Announcements!

Assignment 6

« Assignment 5 was due today at 1:00PM.

 Want to use your late days? You can extend the
deadline by 24 or 48 hours.

 Assignment 6 (T'he Great Stanford Hash-
Off) goes out today. It’s due next Friday.

 Implement the hashing strategies from today!

 See how fast these approaches are and how
they compare against chained hashing!

* As always, come talk to us if you have any
questions! That’s what we’re here for.

Back to CS106B...

A Question of Fairness

 Suppose we look up each of these
elements. How many slots would we
need to look at to find each of them?

What are the remaining numbers?

Answer at

https://pollev.com/cs106bwin23

1 2
A (5) B(5) C(5) D(8) E(7) F(6) G(5)
4 5 6 7 8 9 10 11 12 13

https://pollev.com/cs106bwin23

A Question of Fairness

 Suppose we look up each of these
elements. How many slots would we
need to look at to find each of them?

1 2 3 1 3 5] 7

A (5) B(5) C(5) D(8) E(7) F(6) G(5)

4 5 6 7 8 9 10 11 12

A Question of Fairness

 Suppose we look up each of these

elements. How many slots would we
need to look at to find each of them?

 There’s a large variance in how long it’s
going to take to find things.

 How can we fix this?

1 2 3 1 3 5 7
A (5) B(5) C(5) D(8) E(7) F(6) G(5)
4 5 6 7 8 9 10 11 12 13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

A (5)

B (5)

C (5)

D (8)

E(7)

F (6)

G (5)

12

13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

B (5)

C (5)

D (8)

E(7)

F (6)

G (5)

11

12

13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if B (5)

the element we’re inserting is
further from home than the C(5)
current element, we displace D (8)

that element to make room for
the new one. E (7)
F (6)
G (5)

0
A (5)

4 5 6 7 8 9 10 11 12 13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is

further from home than the C(5)

current element, we displace D (8)

that element to make room for

the new one. E (7)
F (6)
G (5)

0
A (5)

11

12

13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is

further from home than the C(5)

current element, we displace D (8)

that element to make room for

the new one. E (7)
F (6)
G (5)

0
A (5)

11

12

13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

0 1

C (5)

D (8)

E(7)

F (6)

G (5)

A (5) B (5)

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for

D (8)

the new one. E (7)
F (6)
G (5)
0 1
A (5) B (5)
4 5 6 10 11 12 13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for

D (8)

the new one. E (7)
F (6)
G (5)
0 1
A (5) B (5)
4 5 6 10 11 12 13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace

that element to make room for D (8)
the new one. E (7)
F (6)
G (5)
0 1
A (5) B (5)

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

0 1 2

D (8)

E(7)

F (6)

G (5)

A (5) B (5) C(5)

4 5 6 7 8 9 10 11

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for

the new one. E (7)
F (6)
G (5)
0 1 2
A (5) B (5) C(5)
4 5 6 7 13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

0 1 2 0

E(7)

F (6)

G (5)

A (5) B(5) C(5) D(8)

4 5 6 7 8 9 10 11

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

0 1 2 0

F (6)

G (5)

A (5) B(5) C(5) D(8)

4 5 6 7 8 9 10 11

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

E is further from home 1
than D. It’s not “fair”
that D gets this slot. E (7)

0 1 2 0

F (6)

G (5)

A (5) B(5) C(5) D(8)

4 5 6 7 8 9 10 11

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

0 1 2 1

F (6)

G (5)

A (5) B(5) C(5) E(D

4 5 6 7 8 9 10 11

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

0 1 2 1

F (6)

G (5)

A (5) B(5) C(5) E(D

4 5 6 7 8 9 10 11

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

0 1 2 1 1

F (6)

G (5)

A (5) B(5) C(5) E(7)D(8)

4 5 6 7 8 9 10 11

 Robin Hood hashing is a slight

modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

G (5)
0 1 2 1 1
A (5) B(5) C(5) E(7)D(8)
4 5 6 7 8 9 10 11 12 13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

0 1 2 1 1

G (5)

A (5) B(5) C(5) E(7)D(8)

4 5 6 7 8 9 10 11

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

F is further from home 2
than E. It’s not “fair”
that E gets this slot. F (6)

0 1 2 1 1

G (5)

A (5) B(5) C(5) E(7)D(8)

4 5 6 7 8 9 10 11

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

0 1 2 2 1

G (5)

A (5) B(5) C(5) F(6) D(8)

4 5 6 7 8 9 10 11

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

E is further from home 2
than D. It’s not “fair”
that D gets this slot. E (7)

0 1 2 2 1

G (5)

A (5) B(5) C(5) F(6) D(8)

4 5 6 7 8 9 10 11

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

0 1 2 2 2

G (5)

A (5) B (5) C(5) F(6) E(7)

4 5 6 7 8 9 10 11

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

0 1 2 2 2

G (5)

A (5) B (5) C(5) F(6) E(7)

4 5 6 7 8 9 10 11

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

G (5)
o 1 2 2 2 2
A (5) B(5) C(5) F(6) E(7) D (8)
4 5 6 7 8 9 10 11 12 13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

o 1 2 2 2 2
A (5) B(5) C(5) F(6) E(7) D (8)
4 5 6 7 8 9 10 11 12 13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

o 1 2 2 2 2
A (5) B(5) C(5) F(6) E(7) D (8)
4 5 6 7 8 9 10 11 12 13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

o 1 2 2 2 2
A (5) B(5) C(5) F(6) E(7) D (8)
4 5 6 7 8 9 10 11 12 13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

o 1 2 2 2 2
A (5) B(5) C(5) F(6) E(7) D (8)
4 5 6 7 8 9 10 11 12 13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

0 1 2 3 2 2
A(5) B () C(5)G(s) E(7) D(8)
4 5 6 7 8 9 10 11 12 13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

0 1 2 3 2 2
A(5) B(5)C(5)G(5) E(7) D(8)
4 5 6 7 8 9 10 11 12 13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

o 1 2 3 3 2
A (5) B(5) C(5) G(5) F (6) D(8)
4 5 6 7 8 9 10 11 12 13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

o 1 2 3 3 2
A (5) B(5) C(5) G(5) F (6) D(8)
4 5 6 7 8 9 10 11 12 13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

0 1 2 3 3 3
A (5) B (5) C(5) G(5) F (6) E(7)
4 5 6 7 8 9 10 11 12 13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

3
D (8)
0 1 2 3 3 3
A (5) B (5) C(5) G(5) F (6) E(7)
4 5 6 7 8 9 10 11 12 13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

0 1 2 3 3 3 3
A (5) B(5) C(5) G(5) F (6) E(7) D(8)
4 5 6 7 8 9 10 11 12 13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

0
H(12)
0 1 2 3 3 3 3
A (5) B () C(5)G(5) F(e) E(7)D(8)
4 5 6 7 8 9 10 11 12 13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

0 1 2 3 3 3 3 0
A(5) B(5)C(5) G(5)F () E(D(8)H@2)
4 5 6 7 8 9 10 11 12 13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

I(13)

0 1 2 3 3 3 3 0

A(5) B(5)C(5) G(5)F () E(D(8)H@2)

4 5 6 7 8 9 10 11 12 13

 Robin Hood hashing is a slight
modification to linear probing.

« When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

0 1 2 3 3 3 3 0 0

A (5) B(5) C(5) G(5) F(6) E(7) D(8) H(12) I(13) --

4 5 6 7 8 9 10 11 12 13

* Neat trick: We can make
unsuccessful lookups in a
Robin Hood hashing table
faster than in a linear probing
table.

 Idea: Compare the distances

of the item to insert and the J (6)
item being looked up.

o 1 2 3 3 3 3 o o
A (5) B (5) C(5) G(5) F(6) E(7) D(8) H(12) I(13) --
4 5 6 7 8 9 10 11 12 13

* Neat trick: We can make
unsuccessful lookups in a
Robin Hood hashing table
faster than in a linear probing
table.

 Idea: Compare the distances
of the item to insert and the
item being looked up.

o 1 2 3 3 3 3 o o
A (5) B (5) C(5) G(5) F(6) E(7) D(8) H(12) I(13) --
4 5 6 7 8 9 10 11 12 13

* Neat trick: We can make
unsuccessful lookups in a
Robin Hood hashing table
faster than in a linear probing
table.

 Idea: Compare the distances
of the item to insert and the
item being looked up.

1
J (6)
0 1 2 3 3 3 3 0 0
A (5) B (5) C (5) G (5) F (6) E (7) D (8) H{12) I(13) -
4 5 6 7 8 9 10 11 12 13

* Neat trick: We can make
unsuccessful lookups in a
Robin Hood hashing table
faster than in a linear probing
table.

 Idea: Compare the distances
of the item to insert and the
item being looked up.

2
3 (6)
0 1 2 3 3 3 3 0 0
A (5) B (5) C (5) G (5) F (6) E (7) D (8) H{12) I(13) -
4 5 6 7 8 9 10 11 12 13

* Neat trick: We can make
unsuccessful lookups in a
Robin Hood hashing table
faster than in a linear probing
table.

 Idea: Compare the distances
of the item to insert and the
item being looked up.

3
3 (6)
0 1 2 3 3 3 3 0 0
A (5) B (5) C (5) G (5) F (6) E (7) D (8) H(12) I(13) -
4 5 6 7 8 9 10 11 12 13

* Neat trick: We can make
unsuccessful lookups in a
Robin Hood hashing table
faster than in a linear probing
table.

 Idea: Compare the distances
of the item to insert and the
item being looked up.

4

If J were in this
table, it would
have displaced
the E. So J can’t
be in the table!

J (6)

0 1 2 3 3 3

3 0 0

A (5) B(5) C(5) G(5) F(6) E(7)

D (8) H12) I(13) -

4 5 6 7 8 9 10

11 12 13

e Neat trick: Robin Hood
hashing doesn’t need
tombstones.

 We can use a technique
called backward-shift
deletion instead.

o 1 2 3 3 3 3 o o
A (5) B (5) C(5) G(5) F(6) E(7) D(8) H(12) I(13) --
4 5 6 7 8 9 10 11 12 13

e Neat trick: Robin Hood
hashing doesn’t need
tombstones.

 We can use a technique
called backward-shift
deletion instead.

o 1 2 3 3 3 3 o o
A (5) B (5) C(5) G(5)F(6) E(7) D(8) H(12) I(13) --
4 5 6 7 8 9 10 11 12 13

e Neat trick: Robin Hood
hashing doesn’t need
tombstones.

 We can use a technique
called backward-shift
deletion instead.

o 1 2 3 3 3 o o
A (5) B (5) C(5) G(5) E (7) D (8) H(12) I(13) --
4 5 6 7 8 9 10 11 12 13

e Neat trick: Robin Hood
hashing doesn’t need
tombstones.

 We can use a technique
called backward-shift
deletion instead.

We can’t leave this

slot blank. How
should we fill it?
0 1 2 3 3 3 0 0

A (5) B (5) C (5) G (5) E (7) D (8) Hc12) T (13) ..
4 5 6 7 8 9 10 11 12 13

e Neat trick: Robin Hood
hashing doesn’t need
tombstones.

 We can use a technique
called backward-shift
deletion instead.

This element is far
[from home. Let’s

move it closer!

o 1 2 3 3 3 o o
A (5) B (5) C(5) G(5) E (7) D (8) H(12) I(13) --
4 5 6 7 8 9 10 11 12 13

e Neat trick: Robin Hood
hashing doesn’t need
tombstones.

 We can use a technique
called backward-shift
deletion instead.

0 1 2 3 2 3 0 0
A (5) B (5) € (5) G (5) E (7) D (8) H(12) T(13) .-
4 5 6 7 8 9 10 11 12 13

e Neat trick: Robin Hood
hashing doesn’t need
tombstones.

 We can use a technique
called backward-shift
deletion instead.

This element is far
from home. Let’s
move it closer!

0 1 2 3 2 3 0 0
A (5) B (5) € (5) G (5) E (7) D (8) H(12) T(13) .-
4 5 6 7 8 9 10 11 12 13

e Neat trick: Robin Hood
hashing doesn’t need
tombstones.

 We can use a technique
called backward-shift
deletion instead.

0 1 2 3 2 2 0 0
A (5) B(5) C(5) G(5) E(7) D (8) Hc12) I(13) -
4 5 6 7 8 9 10 11 12 13

e Neat trick: Robin Hood
hashing doesn’t need
tombstones.

 We can use a technique
called backward-shift
deletion instead.

This element is
already home.

We’'re done! \

0 1 2 3 2 2 0 0
A (5) B(5) C(5) G(5) E(7) D (8) Hc12) I(13) -
4 5 6 7 8 9 10 11 12 13

e Neat trick: Robin Hood
hashing doesn’t need
tombstones.

 We can use a technique
called backward-shift
deletion instead.

0 1 2 3 2 2 0 0
A (5) B(5) C(5) G(5) E(7) D (8) Hc12) I(13) -
4 5 6 7 8 9 10 11 12 13

e Neat trick: Robin Hood
hashing doesn’t need
tombstones.

 We can use a technique
called backward-shift
deletion instead.

0o 1 2 3 2 2 0 0
A (5) B (5) C (5) G (5) E (7) D (8) Hc12) T(13) -
4 5 6 7 8 9 10 11 12 13

e Neat trick: Robin Hood
hashing doesn’t need
tombstones.

 We can use a technique
called backward-shift
deletion instead.

0 1 2 2 2 0 0
A (5) B (5) C (5) E (7) D (8) Hc12) T(13) -
4 5 6 7 8 9 10 11 12 13

e Neat trick: Robin Hood
hashing doesn’t need
tombstones.

 We can use a technique
called backward-shift
deletion instead.

0 1 2 1 2 0 0
A)B(5) C(5)E(7) D(8) H@az)Ias) -
4 5 6 7 8 9 10 11 12 13

e Neat trick: Robin Hood
hashing doesn’t need
tombstones.

 We can use a technique
called backward-shift
deletion instead.

o 1 2 1 1 0O O
A (5) B (5) C(5) E(7) D (8) Hc12) I(13) --
4 5 6 7 8 9 10 11 12 13

e Neat trick: Robin Hood
hashing doesn’t need
tombstones.

 We can use a technique
called backward-shift
deletion instead.

o 1 2 1 1 0O O
A (5) B (5) C(5) E(7) D (8) Hc12) I(13) --
4 5 6 7 8 9 10 11 12 13

e Neat trick: Robin Hood
hashing doesn’t need
tombstones.

 We can use a technique
called backward-shift
deletion instead.

o 1 2 1 1 0O O
A (5) B (5) C(5) E(7) D (8) Hc12) I(13) --
4 5 6 7 8 9 10 11 12 13

e Neat trick: Robin Hood
hashing doesn’t need
tombstones.

 We can use a technique
called backward-shift
deletion instead.

o 1 2 1 1 o
A (5) B (5) C(5) E(7) D(8) T(13) -
4 5 6 7 8 9 10 11 12 13

e Neat trick: Robin Hood
hashing doesn’t need
tombstones.

 We can use a technique
called backward-shift
deletion instead.

o 1 2 1 1 o
A (5) B (5) C(5) E(7) D(8) T(13) -
4 5 6 7 8 9 10 11 12 13

% Robin Hood Hashing at a Glance %

« To check if an element exists in the table:
Jump to the spot in the table given by the element’s hash code.

Scan forward - wrapping around if necessary - keeping track of how many steps
you’'ve taken. Stop when you find the item, you find a blank slot, or you find a
filled slot closer to home than the number of steps you've taken.

* To insert an element into the table:
If the element is already in the table, do nothing.

Jump to the table slot given by the element’s hash code. Scan forward - wrapping
around if necessary - keeping track of the number of steps taken. If you find an
empty slot, place the element there. Otherwise, if the current slot is full and
closer to home than the element you’re inserting, place the item to insert there,

displacing the element that was at that spot, and continue the insertion as if you
were inserting the displaced element.

 To remove an element from the table:
Jump to the slot given by the hash code of the element.

Walk forward - wrapping around if necessary - until the item or an empty slot is
found. If the item is found, remove it. Then, keep moving forward - wrapping

around as necessary - moving elements backward in the table one slot until an
empty slot or an item in its home position is found.

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

A (hash code 3)
B (hash code 4)
e C (hash code 4)
D (hash code 3)

Which slot does D end in?
How far is it from home?

Answer at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

A (hash code 3)
B (hash code 4)
e C (hash code 4)
D (hash code 3)

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

A (hash code 3)

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

A (hash code 3)

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

A (hash code 3)

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

B (hash code 4)

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

B (hash code 4)

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

B (hash code 4)

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

e C (hash code 4)

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

e C (hash code 4)

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

e C (hash code 4)

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

e C (hash code 4)

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

D (hash code 3)

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

D (hash code 3)

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

D (hash code 3)

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

D (hash code 3)

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

D (hash code 3)

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

D (hash code 3)

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

D (hash code 3)

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

A (hash code 3)
B (hash code 4)
e C (hash code 4)
D (hash code 3)

« What happens if we
delete A?

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

A (hash code 3)
B (hash code 4)
e C (hash code 4)
D (hash code 3)

« What happens if we
delete A?

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

A (hash code 3)
B (hash code 4)
e C (hash code 4)
D (hash code 3)

« What happens if we
delete A?

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

A (hash code 3)
B (hash code 4)
e C (hash code 4)
D (hash code 3)

« What happens if we
delete A?

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

A (hash code 3)
B (hash code 4)
e C (hash code 4)
D (hash code 3)

« What happens if we
delete A?

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

A (hash code 3)
B (hash code 4)
e C (hash code 4)
D (hash code 3)

« What happens if we
delete A?

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

A (hash code 3)
B (hash code 4)
e C (hash code 4)
D (hash code 3)

« What happens if we
delete A?

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

A (hash code 3)
B (hash code 4)
e C (hash code 4)
D (hash code 3)

« What happens if we
delete A?

« What happens if we
now delete D?

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

A (hash code 3)
B (hash code 4)
e C (hash code 4)
D (hash code 3)

« What happens if we
delete A?

« What happens if we
now delete D?

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

A (hash code 3)
B (hash code 4)
e C (hash code 4)
D (hash code 3)

« What happens if we
delete A?

« What happens if we
now delete D?

Try It Yourself!

 Draw what happens if
we insert the following
values into this Robin
Hood hash table.

A (hash code 3)
B (hash code 4)
e C (hash code 4)
D (hash code 3)

« What happens if we
delete A?

« What happens if we
now delete D?

Robin Hood Hashing

 Like linear probing, with a good hash function, the
expected cost of a lookup in a Robin Hood hash table is

O(1).

* (Assuming you have a fixed load factor a and rehash the table
when you get too full.)

 Robin Hood hashing requires a bit of extra work
compared to linear probing for the distance
bookkeeping.

 However, the speedups from cutting off searches early
and for not having tombstones are significant at high
load factors.

* Optional: Code up Robin Hood hashing and compare it
against linear probing.

Your Action Items

 Start Assignment 6

* You know the drill! Slow and steady progress
is the name of the game here.

Next Time

e Linked Lists

« A different way to store a sequence.
* Recursive Data Types

« Data types defined in terms of themselves.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256

